$$H_e = K_e \left[\frac{V^2}{2g} \right]$$

Type of Structure and Design of Entrance	Coefficient K_e
Pipe, Concrete	
Mitered to conform to fill slope	0.7
*End-Section conforming to fill slope	0.5
Projecting from fill, sq. cut end	0.5
Headwall or headwall and wingwalls	
Square-edge	0.5
Rounded (radius = $1/12D$)	0.2
Socket end of pipe (groove-end)	0.2
Projecting from fill, socket end (groove-end)	0.2
Beveled edges, 33.7° or 45° bevels	0.2
Side- or slope-tapered inlet	0.2
Pipe, or Pipe-Arch, Corrugated Metal	
Projecting from fill (no headwall)	0.9
Mitered to conform to fill slope, paved or unpaved slope	0.7
Headwall or headwall and wingwalls square-edge	0.5
*End-Section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
Side- or slope-tapered inlet	0.2
Box, Reinforced Concrete	
Wingwalls parallel (extension of sides)	
Square-edged at crown	0.7
Wingwalls at 10° to 25° or 30° to 75° to barrel	
Square-edged at crown	0.5
Headwall parallel to embankment (no wingwalls)	
Square-edged on 3 edges	0.5
Rounded on 3 edges to radius of 1/12 barrel	
dimension, or beveled edges on 3 sides	0.2
Wingwalls at 30° to 75° to barrel	
Crown edge rounded to radius of 1/12 barrel	
dimension, or beveled top edge	0.2
Side- or slope-tapered inlet	0.2

^{* &}quot;End Section conforming to fill slope," made of either metal or concrete, are the sections commonly available from manufacturers. From limited hydraulic tests, they are equivalent in operation to a headwall in both <u>inlet</u> and <u>outlet</u> control. Some end sections, incorporating a <u>closed</u> taper in their design have a superior hydraulic performance. These latter sections can be designed using the information given for the beveled inlet.

ENTRANCE LOSS COEFFICIENTS (Outlet Control, Full or Partly Full)
Figure 31-10B